Stretchy electronic skin responds to touch and pressure like real skin

In tests with a rat, the e-skin patch conveyed touch and pressure signals to the brain, prompting the animal to move its muscles

A patch of artificial skin can convert signals from pressure or heat sensors into brain signals – touching this electronic skin after it was connected to a rat’s brain spurred the rat to kick its leg. This could be used to improve prosthetics for people who have skin damage. Weichen Wang at Stanford University in California and his colleagues created a device called e-skin out of an electronic circuit and pressure and temperature sensors, all crafted out of a thin and stretchy rubbery material. The team merged these components into one patch that easily conforms to uneven surfaces, such as a human finger. E-skin works by imitating biological skin, where nerves detect pressure or warmth and then send sequences of electrical signals, or “pulse trains”, to the brain.

Leave a Reply

Your email address will not be published. Required fields are marked *